佳能EOS相机闪光摄影(3) |
|
皆能编译 2003年3月1日 |
|
|
佳能EOS使用的闪光测光系统
控制闪光曝光 |
E-TTL的局限性 |
闪光测光原理 |
FP(焦平面或高速同步)闪光模式 |
TTL (透过镜头) 闪光测光 |
TTL和E-TTL与EOS胶片相机 |
TTL闪光的改进,包括佳能AIM |
TTL和E-TTL与EOS数码相机 |
A-TTL (高级TTL) |
A类和B类机身 |
A-TTL的局限性 |
禁止E-TTL |
E-TTL (评价式TTL) |
自美国研究者和发明家Harold ‘Doc’ Edgerton在1931年将现代电子闪光灯摄影变为现实以来,电子闪光灯走过了漫长的道路。但无论是简单的还是复杂的电子闪光灯,其原理始终都是一致的:用电路对电容器进行充电,然后通过闪光泡,一个充满惰性气体的玻璃管将存储的能量释放出来形成瞬间耀眼的光。
![]() |
光的输出视加到闪光管能量的存在与否而在瞬间改变,因此控制闪光灯输出的主要方式就是利用一种称为“晶闸管”的元件来控制电脉冲的持续时间。旧式的手动闪光灯需要人工计算与主体之间的距离,然后调节闪光的持续时间,这是个麻烦又极易出错的过程。现代的闪光灯利用计算机控制的电路自动地完成这一过程。
在常规摄影中,你可以通过两种基本途经来控制进入相机使胶片感光的环境(现场)光。你可以调节快门速度,以改变曝光的持续时间;也可以调节镜头的光圈,控制进入镜头的光线数量。(你也可以使用不同的镜头,在镜头前加滤光片等,不过我们在这里只讨论最基本的问题)。
然而,闪光摄影的情况就大不相同了,因为它涉及到一刹那的光线。在闪光摄影中要记住的一个关键问题是相机的快门速度对闪光曝光毫无意义,只有在后面提到的FP模式下例外。连续光源发出的光会受快门速度的影响,但闪光则太过短促(数个毫秒),机械结构的快门无法限制闪光灯发出的光投射到底片上,快门速度只会影响环境光的数量。
因此,你有四种基本方法来控制闪光灯在胶片上的曝光:
首先,你可以调节镜头光圈。不过,镜头光圈同时也影响到投射到胶片的环境光,因此如果这是唯一的选择的话将极为不便;
第二,你可以改变闪光灯与主体间的距离。光线的衰减遵循已知的物理定律,因而可以被确切地计算出来。不过为调节闪光曝光量而总是移动闪光灯当然很不方便,在影室中这样做还可以,但对临时抓拍或摄影记者来说就行不通了。此外,改变闪光灯与主体间的距离会影响闪光光源的相对大小,这会产生不同的光线质量(硬还是软)。
第三,你可以在闪光灯与主体之间加入不同的散射屏或挡光片,但这些东西不好携带和使用。
第四,如上所述,你可以调节闪光脉冲的持续时间,从而改变所产生光线的亮度,这也是我们用以控制电子闪光灯的主要方法。
这就是闪光测光的真实含义。你需要调节闪光脉冲的持续时间使得胶片正确曝光,以达到你预期的摄影效果。然而,要决定闪光的持续时间长短并非易事,因此,多年来照相机制造商提出了各式各样的自动系统来实现这项功能。
基于上述原因,闪光测光具有与普通现场光测光完全不同的要求。现场光测光可以在快门打开之前很好地完成。例如,EOS相机在你半按快门释放按钮时启动内部测光表。然而,照亮主体的闪光脉冲,只有在你完全按下快门释放按钮之后 才回发出,这意味着闪光脉冲在反光镜抬起(挡住了现场光测光表)且快门打后才发出。
![]() |
因此你可以有两种基本途径来进行闪光自动测光。第一,你可以测量发出的闪光脉冲;第二,你可以在快门打开之前首先发出一束已知亮度低功率的测试脉冲(预闪),并以此作为计算的依据。
这两者测光方法均被佳能用于其自动闪光测光系统中。TTL和A-TTL闪光灯使用前者,而E-TTL使用后者。具有E-TTL能力的闪光灯同时支持FP模式闪光。以下为这些技术的解释。
如前所述,最早的电子闪光灯需要摄影师进行手动距离计算。后来,第一代的自动电子闪光灯依靠外置的传感器确定闪光曝光设定。这些安装在闪光灯前面的传感器简单地记录下主体反射回来的闪光,当达到原先确定曝光水平时,就关断闪光泡的电源。事实上,现在仍然销售的元老级威达283就是用这种方式工作的。
![]() |
当然,这种外置的传感器很容易被欺骗。例如,这种传感器的覆盖区域可能与镜头的不同。因此,奥林巴斯公司于20世纪70年代在其OM2相机上的开创了透过镜头闪光测光的技术。十年之后,佳能在其T90相机中引入了TTL闪光测光,并将其作为EOS系列相机的标准功能。这就是佳能T90是唯一使用佳能TTL系统的非EOS相机的原因。
TTL闪光测光是通过测量从主体反射后进入镜头的闪光脉冲实现的。它实际上是通过胶片外传感器(OTF)实时地测量胶片表面反射的闪光。当传感器感知到产生的闪光足以使中间影调的主体取得正确曝光时,就会使闪光泡熄灭。
OTF传感器安装在机身内部,有兴趣的话,你可以将相机置于B门(就是抬起反光镜并打开快门)并打开相机的后背,就可以看见它。它是一个以45°角向后指向胶片所在平面的小型透镜,位于相机的底部紧挨着快门帘幕前面的地方。它前面的矩形或十字形孔是自动对焦传感器。
TTL的工作过程是这样的:
当快门按钮被按下一半时,相机如常测量当前的现场光。快门和光圈的确定取决于当前的曝光模式 – P、Av、Tv或M。在P模式下,相机将快门速度定于1/60和X-同步之间;在其它模式下则按通常方式测光(具有可在Av模式下锁定在X-同步速度的自定义功能的相机除外)。
当快门被全部按下,相机反光镜抬起,快门打开使胶片曝光。
闪光灯将能量送到闪光管,照亮景物。闪光触发的时间取决于相机是前帘还是后帘同步设定。
闪光脉冲的持续时间由OTF传感器确定,传感器测量景物的平均亮度。如果在明亮的环境(10 EV 或以上)下拍摄,就启动自动填充减弱(除非某些相机上通过自定义功能禁止该项功能),这可以将闪光输出减弱0.5到1.5级。
一旦闪光灯通过对反射的闪光进行实时测量确定前景主体已经被充分照亮,它就切断闪光管的能量,闪光灯随即熄灭。
快门在所设定的时间内保持打开。
反光镜回落,快门关闭。如果闪光灯具有闪光曝光确认指示灯且闪光测光确认曝光足够,该指示灯会点亮。
注意:由于传感器记录的是反射自胶片表面的光线,对于具有不同反射特性的胶片,传感器的反应自然不同。根据EOS名单中B&H的Henry Posner所述,所有具有TTL闪光的相机都按照典型彩色负片的乳剂特性进行校正,因此当你使用反转片时闪光测光可能存在微妙的差别。由于反转片的曝光宽容度很窄,对你来说这可能是一个问题。
支持TTL闪光的相机: |
T90和所有EOS相机,EF-M和数码相机D30、D60、1D和1Ds除外。 |
支持TTL闪光的闪光灯: |
所有‘E’系列Speedlite闪光灯加上300TL:160E、200E、220EX、300EZ、380EX、420EZ、420EX、430EZ、540EZ、550EX、480EG、MR-14EX、MT-24EX和300TL。 |
TTL测光较之依靠外置传感器的系统更加可靠,但仍然会被欺骗。比如,反射强烈的物体或者白色的环境会使光线大量反射,使得相机过早熄灭闪光灯,造成照片曝光不足。主体偏离中央也会引起类似问题。另一个问题是闪光测光是在快门打开的期间进行的,因而相机无法精确区分闪光与现场光测光。
佳能在其多对焦点相机上通过加入他们称为AIM(高级集成多点控制系统)的多区段闪光测光系统对TTL控制加以改进。这使得照相机偏重当前选择的对焦点进行闪光曝光,从而增加了偏离中央主体曝光准确的机会。
AIM系统意味着最好是依赖所选择的非中央对焦点来进行闪光摄影,而不是使用中央对焦点然后重新构图 (除非你使用了闪光曝光锁,详见后面的解释)。有关AIM的更多信息,参见闪光测光模式一节。注意,早期具有多区段闪光测光的EOS相机的文档中并未使用‘AIM’这个字眼,因为佳能在90年代中期才推出这个市场术语,因此未标明‘AIM’的多对焦点相机并不意味着它不具备该功能。
尼康通过把主体的距离加入到闪光计算里面,这就是其‘3D’系统。该系统通过读取镜头的对焦距离确定距离信息。佳能(大概是因为专利的缘故,尽管许多早期的EF卡口镜头无法将距离信息传递给相机)并没有这样做,许多摄影师据此作为尼康的闪光测光比佳能的优越的论据之一。尽管对佳能公平而言,这种距离测量在反射闪光或任何闪光不是直接照射到主体上的柔光系统中并不能正常工作。
佳能公司对闪光曝光设计改进的第一步就是创造了A-TTL,又称为‘高级透过镜头’闪光测光,首先在T90相机中引入,并在EOS系列胶片相机上继续使用。
A-TTL闪光灯(只包括300TL和EZ系列闪光灯)在测光阶段(也就是半按下快门释放按钮时)发出短促的光,这预闪被闪光灯前面的外置传感器记录下来,用于确定合适的光圈,以确保足够的景深,尤其是在距离较短的时候。一旦快门打开,闪光灯便发出真正照亮景物的闪光。
A-TTL的工作过程如下:
当快门按钮被按下一半时,相机如常测量当前的现场光。在P和Tv模式下,现场光确定的光圈值被储存下来,但并未最后设定;在Av和M模式下,光圈值由用户设定。
闪光灯配合现场光测光发出预闪(预闪可以是由安装在闪光灯前面副闪光泡发出的近红外光,或者是主闪光泡发出的白光,这取决于闪光灯的型号和工作模式),以确定闪光灯到主体的大致距离。以此计算出正确曝光的光圈值仅用于P模式。
在P模式下,在快门释放按钮被完全按下时对两组光圈值(现场光和闪光)进行比较,相机通常取其较小的一组,特别是在测得主体距离较近时。在Av和M模式下,光圈由用户设定,而在Tv模式下,光圈由现场光测光结果确定。
如果在明亮的环境(10 EV 或以上)下拍摄,就启动自动填充减弱(除非某些相机上通过自定义功能禁止该项功能),这可以将闪光输出减弱0.5到1.5级。
最后,相机反光镜抬起,快门打开使胶片曝光。
闪光灯发出真正照亮景物的闪光。闪光开始的时间取决于相机是前帘还是后帘同步设定,而闪光的持续时间由标准OTF传感器决定,这与TTL闪光完全相同。
快门在所设定的时间内保持打开。
反光镜回落,快门关闭。如果闪光灯具有闪光曝光确认指示灯且闪光测光确认曝光足够,该指示灯会点亮。
支持A-TTL的机身: |
T90和所有EOS相机,EF-M和数码相机D30、D60、1D和1Ds除外。 |
支持A-TTL闪光的闪光灯: |
300EZ、300TL(仅适应于T90)、420EZ、430EZ和540EZ。 |
很不幸,A-TTL尽管其称为高级的TTL,它的价值是有限的。其一,某些闪光灯如420EZ和430EZ在进行反射模式闪光的情况下,每当你半按下快门时主闪光泡就会发出眩目的白色闪光,这对人物主体来说颇为恼人。虽然这些闪光灯在预闪阶段单独使用一个小型的近红外灯,但是当灯头倾斜或旋转时,就会用主闪光泡(白光)取而代之。
除此以外,与在P模式下由闪光测光自动确定光圈值不同,大多数EOS相机在Av、Tv或M模式下甚至根本不会利用预闪。另外,与E-TTL不同,A-TTL的预闪从来不会用作实际闪光测光。在那些模式下,A-TTL预闪的原本用途是为早期的EOS相机,如630、RT和1提供闪光超出范围的警告信息。出于专利方面的原因,佳能于80年代末放弃了这套系统,但是多数A-TTL闪光灯在非P模式下预闪却作为一种无用的‘阑尾’保留下来。
有趣的是,540EZ在反射模式下将A-TTL降格为TTL,从而避免了上述问题。事实上,与早期闪光灯不同,540EZ在Av和Tv模式下也不使用A-TTL。大概佳能认为购买540EZ的不会是拥有630、RT和1的用户吧。
由于A-TTL传感器位于闪光灯的前面,藏在塑料透镜后面而非透过相机的镜头进行测光,可以想象如果镜头上加了阻光值较大的滤光镜的话,就可能导致测光问题,因为滤光镜没有同时加到传感器上。此外,说到闪光灯上的传感器,要留意不会被手或其它物体遮挡,某些柔光片由于无意中让部分光线进入A-TTL传感器而引起曝光问题。
最后,且不论预闪电路所增加的复杂性,A-TTL往往会设定较小的光圈值,以获取较大的景深,而这未必是你所想要的。
简单地说,在P模式下,A-TTL拍摄快照可充分地保证合理的曝光和景深,对微妙或复杂的布光技术而言则用处不大,在Av、Tv和M模式下就毫无用处。
佳能在1995年随Elan II/50相机发布了另一种形式的闪光技术 - E-TTL,也就是‘评价式透过镜头’闪光测光。E-TTL由主闪光泡发出一束已知亮度的低功率预闪,用以确定正确的闪光曝光。它通过预闪测量景物的反射率,然后基于这些数据计算出达到中间影调所需要的闪光输出功率。它也利用预闪,但出于下述两个原因,它克服了A-TTL的缺陷。
首先,E-TTL预闪发生在快门即将开启之前的瞬间而非半按快门的时候。因而与A-TTL不同, E-TTL预闪实际上用于确定闪光曝光,而且它不是在现场光测光阶段激发。有些用户可能对E-TTL在正式闪光之前发出预闪赶到惊奇。在正常设定条件下,该过程发生得很迅速,以至于预闪被难以察觉到,尽管你可能在反光镜抬起之前瞥见到它(后帘同步时除外)。
其次,预闪光线由用以测量现场光的同一评价测光系统进行分析,这意味着它是透过镜头测光,不象外置传感器一般容易被愚弄,不会受反射闪光的困扰,而且不再需要胶片反射的数据。与TTL闪光测光表不同,E-TTL传感器不易被好奇者看到,它藏在五棱镜的外壳内。
E-TTL较TTL和A-TTL优越之处是用于填充闪光。E-TTL算法在白天摄影时添加微妙和自然的填充闪光方面通常表现较好。E-TTL曝光同时也与当前对焦点相关,在理论上这比多数多区段TTL闪光传感器系统更易取得出色的曝光。
常规的E-TTL 工作过程如下,这里未考虑可选的闪光曝光锁(FEL)功能或无线操作。
当快门按钮被按下一半时,相机如常测量当前的现场光。快门速度和光圈有相机或用户确定,这取决于当前的曝光模式:PIC(图标)模式或P、Av、Tv或M。
当快门按钮被完全按下时,闪光灯立即发出低功率的预闪。
预闪的反射光由相机用于测量现场光的同一套评价测光系统进行分析,确定出适当的输出功率(也就是闪光持续时间)并存储起来。整个传感器区域都得到评价并与现场光测光结果加以比较,当前对焦点周围的区域会被重点考虑。如果你使用手动对焦模式,则使用中央对焦点或使用平均测光。
如果在明亮的环境(10 EV 或以上)下拍摄,就启动自动填充减弱(除非某些相机上通过自定义功能禁止该项功能),这可以将闪光输出减弱0.5到2级。不过,就我所知,E-TTL自动填充减弱的算法从来没有公开过,因此佳能公司外部的人无法准确知道其工作的方式。
最后,相机反光镜抬起,快门打开使胶片曝光,如果是数码相机则令传感器芯片感光。
闪光灯按照先前确定的功率发出闪光照亮景物。闪光开始的时间取决于相机是前帘还是后帘同步设定,相机如果装有OTF传感器,在E-TTL模式下不起作用 。
快门在所设定的时间内保持打开。
反光镜回落,快门关闭。如果闪光灯具有闪光曝光确认指示灯且闪光测光确认曝光足够,该指示灯会点亮。
支持E-TTL的相机: |
所有A类EOS相机。 |
支持E-TTL的闪光灯: |
所有EX系列闪光灯:220EX、380EX、420EX、550EX、MR-14EX和MT-24EX。 |
E-TTL的缺点之一是预闪会使眨眼较快的人拍出眯眼的照片,EOS名单中的Julian Loke将之称为BEETTL综合症,即‘blinking eye E-TTL’。预闪发生在主闪光之前非常短暂的时刻,但是如果使用后帘同步和低速快门,就有足够的时间让眨眼快的人对预闪作出反应。这对于拍摄鸟类的自然摄影师来说同样是个问题。
另一个问题是使用预闪会触发影室从属闪光灯,这些闪光灯检测触发相机发出的光,类似于光同步器。由于同步器过早触发,而导致闪光曝光错误。预闪还会愚弄手持式闪光测光表,使得手动闪光测光变得十分困难。
总而言之,E-TTL是一个非常自动化的系统,但没有向用户提供完整的文档资料。比如,如前所述,佳能公司从来没有公布自动填充闪光算法的详细资料,要领会该系统的响应规律就需要做一些实验。此外,用户可选择的工作模式也较少,比如,多数闪光灯不允许你自行选择TTL、A-TTL或E-TTL闪光测光模式(见下一节)。E-TTL对许多数码相机用户来说也有一些问题(见下面TTL和E-TTL 与数码EOS相机一节)。
最后,并非所有的A类相机和E-TTL闪光灯都支持所有的E-TTL特性。某些无线E-TTL及其它一些如造型光等功能需要新型的A类相机,如EOS 3或EOS 30,以及新型的闪光灯,如550EX或420EX。本文第三部分描述了各种相机与闪光灯的组合所能实现的功能。
使闪光与快门的两片帘幕同步在使用一次性闪光泡的时代就存在着与现在使用电子闪光灯同样多的问题。为此,人们开发出适合焦平面快门的闪光泡,这种闪光泡能快速发光并且在快门开启的时间里持续发光,它们被称为FP灯泡。
佳能公司随E-TTL引入了电子FP闪光模式,它在特定的情形下巧妙地突破了X-同步的限制,这也是奥林巴斯公司开创的另一项闪光技术。FP闪光可以让你在任何喜欢的快门速度下拍摄闪光照片,这是通过以极高的频率(50KHz)激发闪光泡,以降低总输出功率为代价来模拟连续光。FP代表‘焦平面’,用以类比旧式的FP灯泡,尽管Mark Overton在他的FAQ中将之称为‘fast pulse’(快速脉冲-译者注)似乎更加贴切。
该模式在户外大光圈的填充闪光情形下很有用,通常情况下,除非收缩镜头光圈或使用低速胶片,否则你无法在户外使用填充闪光;然而更换胶片十分麻烦,而收缩光圈又会增大景深。比方你想要拍摄人像,通常希望用大光圈使得背景模糊,但光圈越大进入的光线越多,受到相机X-同步速度的限制,你将无法用增加快门速度的办法进行补偿。
FP模式突破了X-同步的限制,达到了相机的最高快门速度(通常是1/2000或1/4000秒),从而解决了上述问题。如果你拍摄比较近的人物,除非你使用低速胶片或很小型的闪光灯如220EX,否则不会受到FP模式下光输出降低的影响。
注意很重要的一点:FP模式无助于你冻结运动的画面,‘高速同步’这个名称在这里有些误导的意味。普通闪光摄影在冻结运动场景方面非常合适,因为其闪光时间难以置信地短促。然而,FP模式闪光发出多次名称来模拟较长时间的闪光,由于闪光时间不够短促,所以即使用较高的快门速度也不易冻结运动的画面。这种模式之所以称为高速同步是因为它可以让你在较高的快门速度下进行同步闪光曝光,而不是让你进行高速摄影。
由于佳能公司的FP模式与E-TTL技术密切相关,因而只能在EX系列闪光灯安装在A类相机时才能实现。这种A类相机与FP闪光灯的规律有两个例外:
其一,B类的EOS 1N机身可以用昂贵的价钱由佳能公司更新软件以支持FP模式,但即便更新软件也无法支持其它任何与E-TTL相关的功能;
其二,数码相机D30和D60用外置闪光灯时可支持FP模式,但其内置与E-TTL兼容的闪光灯却不支持FP模式。
FP模式在A类相机和闪光灯上用一个小的闪电符号加上字母H(代表高速同步)表示。
支持FP模式闪光的相机: |
所有A类EOS相机加上EOS 1N(如果按照上述方法更新软件的话)。 |
支持FP模式闪光的闪光灯: |
所有EX系列闪光灯:220EX、380EX、420EX、550EX、MR-14EX和MT-24EX。 |
至发文时,所有基于胶片的佳能EOS相机都支持TTL闪光测光,只有古怪的佳能EF-M例外,这是一架使用EF卡口镜头的手动对焦相机,但作为节省成本的措施,省略了自动对焦和TTL闪光电路(如果你想要用EF-M进行闪光摄影的话,你只好购买一个带外置传感器的闪光灯Speedlite 200M)。所有基于胶片的内置闪光灯EOS相机都是依靠TTL作为其内置闪光灯的闪光曝光控制。
佳能在1995年发表的Elan II/EOS 50之前的相机都不支持E-TTL。随着这款相机的发表,佳能将其相机分为两类:A类和B类。
A类机身支持E-TTL、FEL和FP闪光技术,B类则不支持。
对于闪光灯则较易区分:如果型号中以字母X结尾的闪光灯(如550EX、MT-24EX)就是E-TTL闪光灯,以其它字母结尾的则不是。
然而,这里有三点需要说明:
第一,佳能在发表Elan II/EOS 50之后的许多年仍在继续设计和生产B类机身,例如EOS 3000(EOS88-译者注)和元老EOS 5/A2,因此你购买相机的日期并不能说明它属于A类或B类机身;
第二,由于佳能在1995年才开始使用A/B分类的约定,旧型号的相机说明书中显然不会注明本身是‘B类’的相机;
第三,A类相机只是说明相机支持E-TTL、FEL和FP模式,而并意味着该相机支持其它近期的闪光功能,比如无线闪光比例或是造型闪光。
所以总的结果如下:
第一,所有EX系列(也就是具有E-TTL功能)的闪光灯也支持TTL测光,当其与旧的B类机身配合使用时会自动转到TTL测光。所有EX系列闪光灯均不支持A-TTL测光。
第二,由于所有EOS胶片相机(A类和B类)既支持TTL也支持A-TTL测光,它们都可以配合E系列工作于TTL模式,配合EZ系列工作于A-TTL模式。
第三,如果相机和闪光灯均支持E-TTL(也就是相机为A类而闪光灯为EX系列),则它们会使用E-TTL,除非被特意取代(见下面‘禁止E-TTL’一节)。
所有配备热靴的佳能数码相机,包括D30、D60、1D 、1Ds和10D等数码EOS相机和非EOS的PowerShot Pro 70 IS、Pro 90 IS、G1和G2轻便数码相机均只支持E-TTL。甚至带内置闪光灯的佳能数码相机也只支持E-TTL(尽管如果你想要在非EOS相机上使用闪光灯可能需要先查阅Kevin Bjorke的主页,看看是否存在某种限制;佳能公司也发表了一封致D30用户的信,内容是关于正确使用EX闪光灯的)。
这意味着只有 EX系列闪光灯可用于佳能当前的数码相机。旧的E和EZ系列闪光灯不能正确地工作,不能进行自动TTL测光。你可以使带手动设置功能的EX闪光灯如550EX在手动模式下工作,不过这需要外部的闪光测光。
这大概是一种节约成本的措施,因为数码机身没有胶片,无法使用常规的OTF闪光传感器进行TTL测光。如同镜面的CMOS或CCD图像芯片表面具有与胶片完全不同反射特性,因此数码相机需要采取一定的模拟措施才能使这样的系统正常工作。由于佳能已清楚地转向E-TTL,只是为了与旧的相机兼容才让其新的闪光灯正常TTL,因此其数码相机只支持E-TTL就不足为奇了。
不清楚第一代的佳能数码单反相机(与柯达联合开发),即已停产的EOS DCS1、DCS3和D2000相机如何支持闪光,似乎DCS相机理论上支持TTL,虽然并不好;而D2000也支持E-TTL,不过佳能的网页上并未明确说明。
最后,E-TTL对数码用户来说有一个特别的问题,许多用户反映在佳能EOS数码相机特别是D30和D60上使用E-TTL闪光灯时存在严重的曝光变化问题,有些问题出现在对焦并重新构图时无法使用闪光曝光锁(FEL),但有许多问题与此无关。问题目前还不十分清楚,但似乎数码相机的E-TTL闪光在存在镜子般反光时特别容易出现测光错误,而FEL的使用又出现了点测光的效果,这需要用户具备精确测光的知识。为此许多数码EOS用户反过来使用旧式的自动闪光灯。不过,数码相机至少还有背面屏幕预览和柱状图,因此如果闪光拍摄失败的话你立即就会知道。
A类机身, 支持E-TTL闪光、 FEL和FP模式: |
EOS D2000 (digital) EOS Rebel 2000/EOS 300/Kiss III、Kiss IIIL EOS IX、IX 7、IX Lite、IX 50 (APS) |
B类机身, 只支持TTL和A-TTL: |
EOS 600系列:600/630/RT、620/650 第一代Rebel系列:Rebel、Rebel S、EOS 1000和所有1000的变种、Rebel II、Rebel X、XS/EOS 500/Kiss |
有时使用TTL测光比E-TTL测光更加合适,一个常见的例子就是在影室内,模拟式闪光同步器常常被E-TTL预闪愚弄。550EX、MR-14EX和MT-24EX可以通过自定义功能禁止使用E-TTL。所有其它EX闪光灯安装在具有E-TTL功能的相机上时,就只能工作在E-TTL模式,尽管相机也可以支持TTL。
解决的方法之一就是使用佳能生产的用来连接多个闪光灯的热靴适配器,这种适配器只能工作在TTL模式,因此把E-TTL闪光灯放在热靴适配器上会强迫它工作在TTL模式。不过,这并不是一种便宜的途径。另一种选择就是用胶带盖住热靴上的数据触点。盖住左下角的触点(从相机背面看过去,一组较小的四个触点之一)可以禁止所有E-TTL功能,这也会禁止后帘同步以及FP闪光和FEL。详情请参阅这篇文章。
注意如果闪光灯置于TTL模式,数码EOS相机将不能触发该闪光灯。数码EOS相机只能工作在E-TTL模式,其它模式都不行。